Effectiveness of HEPA Filters in Reducing Airborne Bacteria in Public Health Laboratory Rooms in Bontang City, Indonesia

Authors

  • Nurul Laili Sya’adah UPT Laboratorium Kesehatan Kota Bontang, Kalimantan Timur, Indonesia
  • Ratih Dewi Dwiyanti Medical Laboratory Technology, Poltekkes Kemenkes Banjarmasin, Indonesia
  • Nurlailah Nurlailah Medical Laboratory Technology, Poltekkes Kemenkes Banjarmasin, Indonesia

DOI:

https://doi.org/10.35916/thmr.v7i2.136

Keywords:

Indoor air germ count, high efficiency particulate air filter, air quality, laboratory

Abstract

Air is a basic human need whose quality needs to be maintained, especially in closed environments such as laboratories. Several factors, such as temperature, humidity, lighting, occupancy density, and ventilation systems, affect the presence of microorganisms in the room. Laboratory users can control microorganisms that cause air contamination by using High Efficiency Particulate Air (HEPA) filters. This study aims to determine the effect of HEPA filter use on the number of airborne germs in laboratory rooms. This type of research is an analytical observational study with a cross-sectional design, with nine rooms as research objects. Air samples were taken six times in each room, namely twice before the use of the HEPA filter (0 hour), twice after the use of the HEPA filter for 3 hours without activity, and twice after the use of the HEPA filter for 3 hours with laboratory service activities. Statistical tests used one-way ANOVA to analyze the data. The results showed that the average number of airborne germs before the use of the HEPA filter was 357,667 CFU/m³. After 3 hours of use of the HEPA filter without activity, the number decreased to 177,444 CFU/m³. After 3 hours of active HEPA filter use, the number of airborne bacteria decreased to 124 CFU/m³. The statistical test results showed a significance value of 0.000 (p < 0.05), which means there was a significant difference between groups. The conclusion is that the use of HEPA filters has a substantial effect on reducing the number of airborne bacteria in the Bontang City Health Laboratory room. Future researchers are advised to increase the duration of HEPA filter use and identify the types of bacteria in the laboratory room.

References

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: A review. Front Public Health. 2020;8:14. https://doi.org/10.3389/fpubh.2020.00014

Bluyssen PM. The indoor environment handbook: How to make buildings healthy and comfortable. London: Earthscan; 2009.

Lee H, Lee BG, Kim YJ, Shim JE, Yoe MK. Assessment of airborne bacteria in the indoor of public-use facilities concentrated on influencing factors and opportunistic pathogenic bacteria. Air Qual Atmos Health. 2024;17:1725–1738. https://doi.org/10.1007/s11869-024-01540-3

Andualem, Z., Gizaw, Z., Bogale, L., Dagne H. Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidiscip Respir Med 14, 2 (2019). https://doi.org/10.1186/s40248-018-0167-y

Kementerian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Nomor 2 Tahun 2023 tentang Kesehatan Lingkungan. Jakarta: Kemenkes RI; 2023.

Kementerian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Nomor 43 Tahun 2013 tentang Cara Penyelenggaraan Laboratorium Klinik yang Baik. Jakarta: Kemenkes RI; 2013.

Wicaksono JB. Pengaruh HEPUV portabel terhadap penurunan angka kuman udara di Jurusan Kesehatan Lingkungan Poltekkes Kemenkes Yogyakarta (Skripsi). Yogyakarta: Poltekkes Kemenkes Yogyakarta; 2021.

Fatma, F. dan Ramadhani, R. (2020) Perbedaan Jumlah Angka Kuman Udara Berdasarkan Hari Dalam Ruangan Di Puskesmas Guguk Panjang, Human Care Journal, 5(3), p. 777. doi: 10.32883/hcj.v5i3.828

MBV AG. *User Manual Compressed Gas Sampler MAS-100 Atmos*. Switzerland: MBV AG; 2024. accessed in July 2025. https://www.mbv.ch/ media/user_manual_compresses_gas_sampler_mas-100_atmos.pdf

Harahap AA. Teknologi High Efficiency Particulate Air (HEPA) Filter [Internet]. IndonesiaRe Insight. 2023. accessed in July 2025 https://indonesiare.co.id/ id/article/teknologi-hepa-filter

Manual Blueair. Blueair Pro XL: User Manual and Technical Specifications. 2024. accessed in July 2025. https://www.blueair.com

Szczotko M, Orych I, M?ka ?, Solecka J. A review of selected types of indoor air purifiers in terms of microbial air contamination reduction. Atmosphere. 2022;13(5):800. https://doi.org/10.3390/atmos13050800

Umami L. Efektivitas penggunaan penjernih udara dalam menurunkan jumlah koloni bakteri udara di ruang bedah minor Departemen Bedah Mulut dan Maksilofasial FKG USU 2019 (Skripsi). Medan: Universitas Sumatera Utara; 2020.

Hidayati N. Kualitas udara ruang perawatan bayi dan ruang perawatan anak berdasarkan angka kuman di RSUD Dr. Moewardi Surakarta (Skripsi). Surakarta: Universitas Sebelas Maret; 2007.

Hospodsky D, Qian J, Nazaroff WW, Yamamoto N, Bibby K, Rismani-Yazdi H, Peccia J. Human occupancy as a source of indoor airborne bacteria. PLoS One. 2012;7(4):e34867. https://doi.org/10.1371/journal.pone.0034867

Lowther SD, Deng W, Fang Z, Booker D, Whyatt JD, Wild O, Wang X, Jones KC. Factors affecting real world applications of HEPA purifiers in improving indoor air quality. Environ Sci Adv. 2022;2(2):235–246. doi:10.1039/D2VA00206J

Moelling K, Broecker F. Air microbiome and pollution: Composition and potential effects on human health, including SARS coronavirus infection. J Environ Public Health. 2020;2020:1646943. https://doi.org/10.1155/2020/1646943

Downloads

Published

15-08-2025

How to Cite

Sya’adah, N. L., Dwiyanti, R. D., & Nurlailah, N. (2025). Effectiveness of HEPA Filters in Reducing Airborne Bacteria in Public Health Laboratory Rooms in Bontang City, Indonesia. Tropical Health and Medical Research, 7(2), 77–86. https://doi.org/10.35916/thmr.v7i2.136

Most read articles by the same author(s)

1 2 > >>